Degradation mechanisms of bioresorbable polyesters. Part 2. Effects of initial molecular weight and residual monomer.
نویسندگان
چکیده
This paper presents an understanding of how initial molecular weight and initial monomer fraction affect the degradation of bioresorbable polymers in terms of the underlying hydrolysis mechanisms. A mathematical model was used to analyse the effects of initial molecular weight for various hydrolysis mechanisms including noncatalytic random scission, autocatalytic random scission, noncatalytic end scission or autocatalytic end scission. Different behaviours were identified to relate initial molecular weight to the molecular weight half-life and to the time until the onset of mass loss. The behaviours were validated by fitting the model to experimental data for molecular weight reduction and mass loss of samples with different initial molecular weights. Several publications that consider initial molecular weight were reviewed. The effect of residual monomer on degradation was also analysed, and shown to accelerate the reduction of molecular weight and mass loss. An inverse square root law relationship was found between molecular weight half-life and initial monomer fraction for autocatalytic hydrolysis. The relationship was tested by fitting the model to experimental data with various residual monomer contents.
منابع مشابه
Degradation mechanisms of bioresorbable polyesters. Part 1. Effects of random scission, end scission and autocatalysis.
A mathematical model was developed to relate the degradation trend of bioresorbable polymers to different underlying hydrolysis mechanisms, including noncatalytic random scission, autocatalytic random scission, noncatalytic end scission or autocatalytic end scission. The effect of each mechanism on molecular weight degradation and potential mass loss was analysed. A simple scheme was developed ...
متن کاملStrength retention behavior of oriented PLLA, 96L/4D PLA, and 80L/20D,L PLA
The strength retention characteristics of oriented semicrystalline polylactides were monitored during hydrolytic degradation in vitro. The effects of the polymer type, the material's initial inherent viscosity (iv), the sample diameter and the residual monomer content on strength retention were analyzed. The analyzed polylactides had similar, but not identical, strength retention characteristic...
متن کاملEffect of Hydroxyl Monomers on the Enzymatic Degradation of Poly(ethylene succinate), Poly(butylene succinate), and Poly(hexylene succinate)
Poly(ethylene succinate) (PES), poly(butylene succinate) (PBS), and poly(hexylene succinate) (PHS), were synthesized using succinic acid and different dihydric alcohols as materials. Enzymatic degradability by cutinase of the three kinds of polyesters was studied, as well as their solid-state properties. The biodegradation behavior relied heavily on the distance between ester groups, crystallin...
متن کاملتأثیر ماده آلی و بافت خاک بر تجزیه علف کشهای آترازین و متامیترون
Of all types of xenobiotics, pesticides such as herbicides play a significant role in soil and water pollution due to their widely usage all over the world. This study addresses the ability of organic amendments to enhance atrazine and metamitron degradation in two herbicide contaminated soils with contrasting textures under laboratory conditions. Soil samples were collected from surface soils ...
متن کاملBranched and Crosslinked Resorbable Polymers Based on Lactic Acid, Lactide and Ε-caprolactone
Branched and crosslinked degradable polyesters based on lactic acid, lactide and εcaprolactone were prepared by utilizing different polymerization methods. Chain linking of hydroxyl telechelic lactic acid oligomers with 1,6-hexamethylene diisocyanate (HMDI) as a chain extender, yielded lactic acid based poly(ester-urethanes). When an excess of HMDI was used, polymers with broader molecular weig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta biomaterialia
دوره 10 5 شماره
صفحات -
تاریخ انتشار 2014